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! Resting state network

Network 1, 2 and 3 have distinct spatial and 
temporal characteristics that could not have been 

found in a static analysis"



Can we use MEG to answer 
these questions?"

"

• What is happening at faster time-scales?"

• What are the specific temporal interactions, or 
network dynamics?"

• How activity organises temporally and spatially in 
rest, and how connectivity is modulated in task"
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! Goals
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! State-of-the-art methods: ICA

• Activation pattern or components (A)"
• Component time courses (S)"

"
• Specified on power time series"
• Components do not reflect functional 

connectivity 
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Temporal Independent Component Analysis
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Brookes et al (PNAS 2011)



Compute sliding window correlation network matrices
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! State-of-the-art methods: Sliding Windows
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O’Neil et al.; Neuroimage (2015)
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! State-of-the-art methods: Sliding Windows

• too short - unstable, unreliable estimation 
• too long - misses quick changes

How to choose the width of the window? 
Issues:

Inefficient use of the data           
• No matter how much data we have, each estimation 

is based on a small portion of the data 



Instead	pool	data	over	disjoint	7me	periods:	

State	1 State	4State	3State	2
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! Hidden Markov Model

• One state is assumed at a time "
although a we effectively estimate the probability of each 
state being active at each time point t "

• Which state is active at time t depends on which state 
was active at time point t-1 !

which means that the influence of the past decreases 
exponentially 

"

Fundamental assumptions 

• We do not need to specify the window length"
• We make an efficient use of the data"
• We can access the fastest time scales"

"
"

Benefits
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! Hidden Markov Model

State time courses:"
When

State probability distribution 
(one for each state):

What

Transition probability 
matrix

Mean activation Functional connectivity

Different classes of probability distributions adapt 
to different classes of data  !

this is a user choice 



30s 60s0sPr
ob

. o
f s

ta
te

 a
ct

iv
at

io
n

0.0

0.5

1.0

6 4

Mean activation Functional connectivity

6

4

DMN

Visual network

In rest

!
!
!
! Hidden Markov Model
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! Hidden Markov Model

At the subject level !
"

"

At the group level!
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What is a brain state?  A Gaussian distribution  N (μ,Σ) 
Power time series

time

Baker et al (eLife 2014)
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! HMM-Gaussian
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ERF

trialwise occupancy

• Fit HMM to task data, then epoch and average the state time 
courses over trials
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TASK DATA

HMM-Gaussian



• Task-related	HMM	
states

• 10	subjects	

• 4-30Hz	

• 8	HMM	states
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! HMM-Gaussian

> options = struct(); 
> options.K = 8; 
> options.order = 0;  
> options.zeromean = 0;  
> options.covtype=’full’; 
> [hmm,Gamma] = hmmmar(X,T,options); 

To set an HMM-Gaussian:

No. of states

Model the mean

Full connectivity

HMM structure State time courses
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In summary:

• The HMM-Gaussian focuses on power and can 
be applied to whole brain

• But: is insensitive to phase and is not frequency-
resolved

HMM-Gaussian
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! HMM-MAR
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Vidaurre et al (NeuroImage 2016)

what about working with raw time courses?"
 e.g. can we then find time-varying phase locking?"
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MAR model

Power spectral density 
Coherence

Directed coherence 
Phase

Contains

tt-τt-2τt-3τ

HMM-MAR
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MAR model
HMM-MAR

• The MAR contains information about phase 
"

• It is spectrally resolved, i.e. all of these 
quantities (power, coherence, phase relations) 
are defined as a function of frequency



Finger-tap (beta suppression) 
Post-finger-tap (beta rebound) 
Baseline 
"

time (s)

Fr
ac

tio
na

l o
cc

up
an

cy

Spectral properties of each HMM stateHMM state time-courses

- significant state-dependent (time-varying) 
power spectra

!
!
!
! HMM-MAR
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Computing T-F 
Maps from HMM
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! HMM-MAR

> options = struct(); 
> options.K = 3; 
> options.order = 5;  
> options.zeromean = 1;  
> options.covtype=’diag’; 
> [hmm,Gamma] = hmmmar(X,T,options); 

To set an HMM-MAR:

No. of states

MAR order

HMM structure State time courses
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! Hidden Markov Model

In summary:

• The HMM-Gaussian approach focuses on power 
and can be applied to whole brain

• The HMM-MAR works on the raw time series and 
is sensitive to phase information, and is 
applicable to low-to-medium number of regions

More info in : https://github.com/OHBA-analysis/HMM-MAR/wiki

https://github.com/OHBA-analysis/HMM-MAR/wiki
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! Hidden Markov Model

In the practicals

1. We will apply the HMM-Gaussian on resting 
state whole brain MEG data and find resting 
state networks that are defined in terms of 
activation and functional connectivity (power 
correlation) 

"
2. We will apply the HMM-MAR  on two motor 

regions to capture quick changes elicited during 
a motor task, in terms of power changes and 
phase coupling


