Group-level Analysis in OSL

OHBA Analysis Workshop

Group Analysis

 typically need to infer across multiple subjects, sometimes multiple groups and/or multiple sessions

 questions of interest involve tests/comparisons at the group level

OAT Pipeline Stages

Multiple Session Analysis

Multiple Session Analysis

Multiple Subject Analysis

• We have two groups (e.g. 7 patients, 7 controls)

(e.g. [1 -1], "faces-motorbikes") at a voxel and timepoint-within-trial

• The whole group analysis can be repeated for ANY first-level contrast

Single Group Average

• We have 7 subjects - all in one group - and want the mean group average:

Behavioural Variables

• We have 7 subjects - all in one group - and want to investigate a behavioural effect

- Behavioural scores for each subject
 - (Make sure this regressor is demeaned if you want to interpret the first regression parameter as the group average)

Other things you can do with the Group GLM

- Paired t-tests
- Behavioural Regressors
- Interactions
- For more see:
 - http://www.fmrib.ox.ac.uk/fslcourse/lectures/inference.pdf

ERF rectification

• Problem:

- there is an **ambiguity** between the reconstructed dipole direction and the sign of the reconstructed time series
- \rightarrow not trivial to resolve this, e.g.

subject l

raw COPE estimate:

will cancel out

subject 2

raw COPE estimate:

ERF rectification

• Solution: use abs(COPE)

subject l

abs(COPE) estimate:

time

subject 2

abs(COPE) estimate:

time

Multiple Comparison Problem

• We could carry out a null hypothesis test for each voxel using a chosen false positive rate (FPR)

 However, if we used FPR=0.05 with 20,000 brain voxels then we would get 1000 FPs

Multiple Comparison Problem

• We could carry out a null hypothesis test for each voxel using a chosen false positive rate (FPR)

 However, if we used FPR=0.05 with 20,000 brain voxels then we would get 1000 FPs

 Not good - we would really like the FPR to correspond to the probability of getting one FP in the entire brain

Bonferroni Correction

 Bonferroni: divide uncorrected p-threshold by number of voxels before thresholding

• E.g. 20,000 brain voxels:

an uncorrected p-threshold of 0.05 becomes

0.05 / 20,000 = 0.0000025

Thresholding: Clustering

What about testing significance on clusters?

Threshold at (arbitrary!) level

Thresholding: Clustering

What about testing significance on clusters?

Threshold at (arbitrary!) level

- Form clusters from surviving voxels.

- **BUT**, what is the probability of getting a cluster, given its spatial extent (no. of voxels in cluster) and threshold, under the null hypothesis?

- Can use Random Field Theory, but involves dodgey assumptions, instead ...

We can record the cluster sizes from our dataset

We can then permute the design matrix group labellings to get the null distribution of the maximum cluster size

40

We can then permute the design matrix group labellings to get the null distribution of the maximum cluster size

Cluster size from our correct group model

- Only 5 permutations yielded larger clusters than original group labellings: [Corrected P-Value=5/5000=0.001]

- We CAN reject the nullhypothesis in this case

Variance Smoothing

- It is advantageous to smooth the group (between-subject) variance (VARCOPE)
- This preserves the effect size (COPE) spatial resolution, while increases the degrees of freedom for the VARCOPE estimation
- Permutation testing adjusts accordingly to keeps stats valid

Practical

Beamformer group analysis, for which source_recon, first_level and subject_level OAT stages have already been run.

Includes:

a) Wholebrain (ERF) analysis
b) Spatial ROI analysis
c) Time window (spatial map) analysis

Using (3D) permutation testing

d) ROI time-freq analysis using (2D) perm testing