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Talk Outline
!
• Source reconstruction background	

!

• Co-registration and forward modelling	

!

• Inverse problem:	

• Dipole fitting	

•  Minimum norm	

•  Beamforming	


!
• OSL (OHBA’s Software Library):	


• OAT (OHBA’s easy Analysis Tool)	
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The Problem - MEG Source 
Reconstruction
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Setting up the head meshes

• Can use an individual’s MRI or the MNI 
“template”	


• Creates cortex (blue), inner skull (red) and 
scalp (orange)
➡ created by:	


• nonlinear registration of the 
subject’s MRI to a “canonical” 
template (with known mesh 
surfaces)	


• Canonical meshes can then be 
transformed into subject’s head 
coordinates



• MNI coordinates are defined using a standard template brain.	

• 3 fiducials (via anatomical features)	

• Scalp (and cortex, inner skull) head mesh	


!
• Head coordinates are defined based on the 3 fiducials: nasion, left/
right preauricula.	


• 3 fiducials (via Polhemus)	

• Head Position Indicator (HPI) coil (via Polhemus)	

• Headshape points (via Polhemus)	


!
• Device coordinates are defined relative to some point external to 
the subject and fixed with respect to the measuring device.	


• Head Position Indicator (HPI) coils (via detection by MEG sensors)	


• Sensors

Co-registration

head meshes MEG sensors
?

The coordinate systems and what we can locate in them:
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• MNI coordinates are defined using a standard template brain.	

• 3 fiducials (via anatomical features)	

• Scalp (and cortex, inner skull) head mesh	


!
• Head coordinates are defined based on the 3 fiducials: nasion, left/
right preauricula.	


• 3 fiducials (via Polhemus)	

• Head Position Indicator (HPI) coil (via Polhemus)	

• Headshape points (via Polhemus)	


!
• Device coordinates are defined relative to some point external to 
the subject and fixed with respect to the measuring device.	


• Head Position Indicator (HPI) coils (via detection by MEG sensors)	

• Sensors

Co-registration
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The coordinate systems and what we can locate in them:



Forward Model

• Computes the lead fields, H(ri)	


• Model just the inner skull surface, using:

➡ Single sphere	


➡ MEG local spheres	

➡ a sphere fitted separately to the local 

curvature below each sensor	


➡ Single shell	




Forward Model

• Computes the lead fields, H(ri)	


• Model just the inner skull surface, using:

➡ Single sphere	


➡ MEG local spheres	

➡ a sphere fitted separately to the local 

curvature below each sensor	


➡ Single shell 

Selecting forward models for MEG source-reconstruction using model-evidence	

R.N. Henson et al, Neuroimage 2009.



OSL forward modelling 
(and co-registration)

• Use call to osl_forward_model (Note: OAT will 
automatically do this):	


S2=[];	


S2.D = spm_file_name;        	


S2.sMRI = structural_file_name; % set S2.sMRI=''; if there is no 
structural available        	


S2.useheadshape=1;	


S2.forward_model=‘Single Shell’;	


D=osl_forward_model(S2);	




Check the Result

• Call spm_eeg_inv_checkdatareg(D). 	


➡ shows everything co-registered	


• Things to look out for are:	


➡ Are the headshape points (small red dots) well matched 
to the scalp surface?	


➡ Is the head sensibly inside the sensor array (green 
circles)?	


➡ Are the MRI fiducials (pink diamonds) located sensible 
close to the Polhemus fiducials (light blue circles), and 
are they sensibly located with respect to the head?
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 Source Reconstruction

Activity estimates
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“Sensor space”
306 MEG sensors

L=~10,000 vertices

under-constrained 
inverse  
problem

forward  
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Inverse problem: reconstruction of the underlying neuronal current distribution given the data at the sensors. 

m(ri)



We need to apply constraints/priors

• Only a small number of dipoles are active, i.e. sparseness 
(Dipole Fitting)!
!

• Distributed solutions!
!

• Allow all dipoles across a whole brain grid to be active!
!

• E.g.:!
!

• All dipoles are active but their power is minimized (Minimum 
Norm)!

!
• All dipoles are active but their spatial pattern is smooth 

(LORETTA)!
!

• All dipoles are active but their spatial pattern is smooth and 
sparse (SPM MSP (Multiple Sparse Priors))!
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Assumes a small number of dipoles ( e.g.              )

Dipole Fitting
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and finds the largest goodness of fit (smallest least-squares error 
between the data and the model) achievable by adjusting the dipole:	

        - orientation	

         - location 	

         - amplitude



Dipole Fitting

Fisher et al. 2004 

!
• Effective at modelling short (<200ms) 

latency evoked responses 
!
!

• BUT, what about more distributed brain 
activity? Non-linear minimization 
becomes unstable for more sources.



We need to apply constraints/priors

• Only a small number of dipoles are active, i.e. sparseness 
(Dipole Fitting)!
!

• Distributed solutions!
!

• Allow all dipoles across a whole brain grid to be active!
!

• E.g.:!
!

• All dipoles are active but their power is minimized 
(Minimum Norm)!

!
• All dipoles are active but their spatial pattern is smooth 

(LORETTA)!
!

• All dipoles are active but their spatial pattern is smooth and 
sparse (SPM MSP (Multiple Sparse Priors))!



y =
L�

i=1

H(ri)m(ri) + e

Minimum Norm

• Cost function combines goodness of fit:!

   with the requirement that all dipoles are active but their power is 
minimised, i.e.:!

minimise(�Goodness of fit + k � Penalty for large power in m(r))

(Note that this is the “IID” option in SPM)



Minimum Norm

prefers 
this 

Indirectly gives solutions that are diffuse/smooth

to this 

• All dipoles are active but their power is minimized
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Beamformer methods:  
!

• do not try to explain the complete measured field  
• construct a spatial filter that blocks the contributions of all sources not at the 

location in question 

Beamforming 

ri �m(ri) = W T (ri)y



Beamforming 

Beamformer weights, W(ri), just depend on:	

!
  1) The lead field matrix at location ri , H(ri).	

  2) The data covariance.	


sensors

sensors

data covariance matrix, cov(y)

(represents the activity across the whole brain AND from elsewhere)

y

�m(ri)

�m(ri) = W T (ri)y



Beamformers block out interference 

Correlation between ECG and 
MEG channels over the left 
motor cortex 

Correlation between ECG and 
beamformer projected time 
course in left motor cortex 

Data courtesy of 
Matthew Brookes 

(Nottingham University)



OSL Beamformer

• Bandpass temporal filtering is done on the 
continuous, before any epoching	


• Normalises the different sensor types using 
the noise variance to allow fusion	


• Works in a PCA subspace combined over 
both sensor types 	


➡ dimensionality can be specified	


➡ e.g. restricted to a dimensionality of <64 for 
Maxfiltered Elekta data)



• Problem:	


➡  there is an ambiguity between the reconstructed dipole 
direction and the sign of the reconstructed time series	


➡ not trivial to resolve this, e.g.

raw COPE estimate:

LOOKS THE 
SAME AS raw COPE estimate:

ERF rectification

time time



!

• We need to find a way to do tests/comparisons 
that is insensitive to this ambiguity so that the 
COPEs are:	


➡ comparable over space (e.g. so we can do spatial smoothing)	


➡ comparable over subjects (e.g. so we can do group averaging)	


• Solution: use abs(COPE)

ERF rectification



raw COPE estimate: raw COPE estimate:

ERF rectification

time time

• Solution rectification: use abs(COPE)



abs(COPE) estimate: abs(COPE) estimate:

• Solution rectification: use abs(COPE)

ERF rectification

time time



!

• We need to find a way to do tests/comparisons 
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!

• We need to find a way to do tests/comparisons 
that is insensitive to this ambiguity so that the 
COPEs are:	


➡ comparable over space (e.g. so we can do spatial smoothing)	


➡ comparable over subjects (e.g. so we can do group averaging)	


• Solution: use abs(COPE). This means:	


➡ for main effects we need to do baseline correction (e.g. 
oat.first_level.bc=1)	


➡ do not do spatial smoothing or averaging (e.g. over an 
ROI) until after ERF rectification (i.e. after the first-level 
stats have been computed)

ERF rectification



OAT Pipeline Stages

• 4 distinct pipeline 
stages:	


SPM MEEG 
object

subject COPES 	

and t-statistics

Source 
Reconstruction

First-level  
within-session GLM

Subject-level 	

session averaging

Design matrix

Contrasts

OAT

session COPEs	

and t-statistics

group COPES 	

and t-statistics

Group-level subject-
wise GLM

Design matrix

Contrasts

(Note: the source recon stage 
always gets run even for a 

sensor space analysis)



OAT

• To beamform, use the setting: 	


• oat.source_recon.method=‘beamform’;

• Analysis in:	


➡ time domain (e.g. ERF-style), or	


➡ in time-frequency domain (e.g. induced responses)	


• Analysis over:	


➡ whole brain, or	


➡ ROIs             (All in MNI coordinates)	


• First-level (within-subject) analysis, using:	


➡ trial-wise GLM on epoched data	


➡ time-wise GLM on continuous data	


• Group-level (between-subject) subject-wise GLM analysis



Practical
!
1) Source space trial-wise GLM using OAT on 
epoched data:!

!
a) Time-domain (ERF) analysis!
!

b) Time-frequency (induced response) analysis!
!

c) Whole brain / ROIs!
!
2) Source space time-wise GLM using OAT on 
continuous data.!

!


