MEG-ROI-nets

- Introduction to MEG functional connectivity
- Typical analysis pipeline
 - Parcellations
 - Leakage correction
- Choosing a connectivity metric
- Analysis example

MEG: what FC measure should we use?

- Can NOT use raw zero-lag correlation as we do in fMRI (due to conduction delays)
- Need to use measures that are robust to non-zero lags

Amplitude Coupling

 Detects if the amplitude (or power/envelope) time courses in particular frequency bands are correlated

Phase coupling

 Detect consistent phase differences between brain signals

Hipp et al.; Nat Neuro (2012) Brookes et al.; Neuroimage (2013)

Compute parcel timecourses

- Reduce from voxels to parcels
- Options available mean time-course, PCA, single voxel with max power
- We tend to prefer PCA

Functionality provided by ROInets.get_node_tcs()

Choosing a parcellation

- Main consideration do the parcels actually correspond to co-activated voxels?
 - What happens to the PCA if voxels within a parcel are *not* well correlated?
- We tend to use parcellations with around 40-80 regions
 - Important that parcels are small enough to resolve localised activity especially in task analysis
 - Fewer parcels improves tractability
 - Often helpful to compare several different parcellations

Other choices

- Weighted/unweighted
- Overlapping
- Some steps (e.g. PCA) may require binary, unweighted parcellations

Spatial leakage

Uncertainties in the source reconstruction induce **zero-lag** spatial correlations in source space

- Leakage pattern is non-trivial and depends on beamformer inverse solution
 - \cdot Depends on the data
 - Not identical for each voxel
- **SOLUTION**: remove all zero-lag correlations
- Still permits lagged interactions, which are genuine

Hipp et al.; Nat Neuro (2012) Brookes et al.; Neuroimage (2013)

Without leakage correction, connectivity is dominated by signal leakage

Brookes et. al.; NeuroImage (2012)

Pairwise leakage correction

Orthogonalise **pairs** of raw time courses (regress one out of the other) **before** computing amplitude time courses

But what about **multi-region** analyses?

e.g. regularised partial correlation (direct vs indirect connections)

Colclough et. al. Neuroimage 2015

Multi-region leakage correction

Can perform a **multi-region** orthogonalisation in one shot:

- Find the the closest orthonormal basis for the original timecourses
- Any subsequent multi-variate analysis is possible
- Requires number of parcels < rank of data (affected by Maxfilter)
- In general, good results up to about 100 parcels

Multi-region leakage correction

- The orthonormal basis still differs from the signals in terms of their amplitudes
- Can iteratively adjust amplitudes and rotate to find orthogonal (but not normal) basis that best matches the original signals

Functionality provided by **ROInets.remove_source_leakage()**

Correlation options: Downsampling

- Enhances functional connectivity measures between regions that are known to be connected
- Tradeoff because downsampling also increases correlation between genuinely uncorrelated regions

- Optimal sampling rate depends on the amount of data you have
- Don't forget to low-pass filter!

Correlation options: Partial correlation

- Partial correlations are included in ROInets
- Work by Colclough et. al. (2015) advocates general use of partial methods
- But regularization is almost essential (will examine in tutorial) and this can be computationally expensive
- Both full and partial correlations are acceptable in literature

Connectome in resting-state MEG

38 cortical regions

Eyes open CTF resting-state data - 8 subjects

- Alpha band (8-12 Hz) amplitude time-courses
- Regularised partial correlation connectome
- Thresholded at 5% FDR (multiple comparison correction)

No Spatial Leakage Correction Multivariate Spatial Leakage Correction

Colclough, Smith ... Woolrich; Neuroimage (2015)

- Very similar workflow to amplitude envelopes
- Some phase connectivity measures not affected by spatial leakage
- Typically don't low pass filter open question whether this is beneficial

Phase Coupling Measures

• Detect consistent phase differences between brain signals

- Spectral methods
 - Estimated via multi-tapers, wavelets or MAR models
 - Need to choose parameters e.g. taper size or model order
- Phase estimation methods
 - Phase estimated on band-pass filtered data
 - Need to choose sensible frequency bands

	Robust to spatial leakage	Partial?
Coherence	No	No
Imaginary coherence	Yes	No
Partial coherence	No	Yes
Phase Locking Value (PLV)	No	No
Phase Lag Index (PLI)	Yes	No

Choosing a metric - consistency

- Tested metrics using Resting-state data from Human Connectome Project, 61 subjects with 3 (6 min) sessions each
- Within-subject consistency similarity between the 3 sessions
- Group-level consistency similarity between different partitions of the 61 subjects

Choosing a metric - consistency

Colclough et al., How reliable are MEG resting-state connectivity metrics? Neuroimage, 2016

Testing the consistency of connectome estimation

 Overall - most consistent is amplitude coupling with spatial leakage correction (*AEC)

Colclough et al., How reliable are MEG resting-state connectivity metrics? Neuroimage, 2016

Group-level analysis application - heritability of MEG connectomes

Human Connectome Project twin rest data

Colclough, Smith ... Woolrich; In submission

Group-level analysis application - heritability of MEG connectomes

MEG - alpha band (61 subjects)

log(difference in connectomes)

- Mean edge heritability: 33% (p = 0.01)
- Shared genetics outweigh shared environment (p = 0.02)

Colclough, Smith ... Woolrich; In submission

Group-level analysis application - heritability of MEG connectomes

fMRI (~500 subjects) log(difference in connectomes)

MEG - alpha band (61 subjects) log(difference in connectomes)

- Mean edge heritability: 33% (p = 0.01)
- Shared genetics outweigh shared environment (p = 0.02)

Software implementation

- MEG-ROI-nets (Region of Interest Network Analysis for MEG)
- Basic functions operate on matrices
- Included as part of OSL, can work with SPM MEEG objects directly
- Also contains scripts to perform analysis of entire datasets

Tutorials

- 1. Introduction to orthogonalization
- 2. Using ROInets with a single subject
- 3. Using ROInets on a group of subjects