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• Induced analysis of the decision making 
period:

• source reconstruction
• epoching: time-locked to when the 
response is given
• compute the average evoked power 
(the induced response, ERD/ERS) from 
1-12Hz 
• group averaged over 30 subjects
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Hunt et al., Nature Neuroscience, 2012. 
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Talk Outline

• Analysing epoched task data in sensor space 

• OSL (OHBA’s Software Library):
• OAT (OSL’s Analysis Tool)



Epoched Data Example 

• Faces versus motorbikes

➡ 240 trials (epochs) of presenting pictures of faces

➡ 120 trials (epochs) of presenting pictures of 
motorbikes

• We want to compare the responses time-
locked to stimulus presentation (i.e. the 
Event-Related Fields (ERFs))



AFRICA: remove eyeblinks/
cardiac etc.

Time-frequency 
decomposition

Source reconstruction

Convert into SPM format

Compute statistics on 
contrasts

oslview: remove bad epochs

Fit General Linear Model 
(GLM)

Epoch



AFRICA: remove eyeblinks/
cardiac etc.

Epoch

Time-frequency 
decomposition

Source reconstruction

Convert into SPM format

Compute statistics on 
contrasts

oslview: remove bad epochs

Fit General Linear Model 
(GLM)
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1. Identify when trial events occurred (e.g. the 
time of stimulus presentation in each trial)
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Epoching and ERFs
Epoching takes in source or sensor data:
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3. Average over all trials to compute 
an average stimulus response, known 

as an ERF (Event Related Field)

2. Extract time-locked 
“epochs” of data
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1. Identify when trial events occurred (e.g. the 
time of stimulus presentation in each trial)

time-within-trial (s)

Epoching and ERFs
Epoching takes in source or sensor data:

locations x timepoints
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ERFs can be also computed using separate multiple regressions at each sensor and timepoint

Trial-wise multiple regression
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Note that the GLM is a general framework, e.g. in which we can also fit continuous 
variables:

b1

GLM

e.g. total 
value of 
the two 
options

Hunt, Nature Neuroscience, 2012
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Other stuff the GLM can do
• Continuous (e.g. behavioural) variables

• Time-frequency (induced response) analysis 

• Linear, and higher order, trends between conditions

• Factorial designs (interaction effects)

• F-tests (combined explanatory power over multiple 
contrasts)

• Subject-wise GLMs at the group level (e.g. patients vs 
controls)

• See the FSL course FEAT/FMRI Preprocessing and Model-
Based slides at:

http://www.fmrib.ox.ac.uk/fslcourse

http://www.fmrib.ox.ac.uk/fslcourse/lectures/feat3.pdf


Contrasts

Contrast [1 0] gives a COPE =1xB1+0xB2 
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A COntrast of Parameter Estimates (COPE) is a linear 
combination of the regression parameter estimates, e.g.
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Use a t-test to test the null hypothesis that COPE=0:
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Contrasts

A COntrast of Parameter Estimates (COPE) is a linear 
combination of parameter estimates, e.g.

Contrast [0 1] gives a COPE = 0xB1+1xB2 
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Test the null hypothesis that B2=0
e.g. where in time and space is there 
significant positive* activity in 
response to the motorbike condition?

* as we are doing a one-tailed t-test



Contrasts

Contrast [1 -1] gives a COPE =1xB1-1xB2 
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Test the null hypothesis that B1-B2=0
e.g. where in time and space is there more* activity in response to the 
faces than the motorbike condition?

* as we are doing a one-tailed t-test

A COntrast of Parameter Estimates (COPE) is a linear 
combination of parameter estimates, e.g.



OAT - OSL’s Analysis Tool

• Task-based analysis in:

➡ sensor space, or

➡ source space (e.g. via beamforming)
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OAT - OSL’s Analysis Tool

• Task-based analysis in:

➡ sensor space, or

➡ source space (e.g. via beamforming)

• In:

➡ time domain (e.g. ERF-style), or 

➡ in time-frequency domain (e.g. induced responses)

• First-level (within-session) analysis, using:

➡ trial-wise GLM on epoched data

➡ time-wise GLM on continuous data

• Group-level (between-subject) subject-wise GLM analysis



OAT Pipeline Stages

• 4 distinct pipeline 
stages:

SPM MEEG 
object

subject COPES 
and t-statistics

Source 
Reconstruction

First-level 
within-session GLM

Subject-level 
session averaging

Design matrix

Contrasts

OAT

session COPEs
and t-statistics

group COPES 
and t-statistics

Group-level subject-
wise GLM

Design matrix

Contrasts

(Note: the source recon stage 
always gets run even for a 

sensor space analysis)



OAT Setup

• Set some mandatory fields, and then use 
osl_check_oat call to setup an OAT struct:

➡ oat= osl_check_oat(oat);



• Set some mandatory fields, and then use 
osl_check_oat call to setup an OAT struct:

➡ oat= osl_check_oat(oat);

• Settings are organised by the 4 distinct 
stages of the pipeline:
➡ oat.source_recon, e.g. 

➡ oat.first_level (GLM within-session analysis)

➡ oat.subject_level (within-subject averaging)

➡ oat.group_level (GLM subject-wise analysis)

OAT Setup



OAT Setup

• The oat gets stored in the directory specified in 
oat.source_recon.dirname, with a ‘.oat’ suffix

• A previously setup/run oat can be loaded into Matlab with: 

• oat.source_recon.dirname=‘/path/oatname’;

• oat=osl_load_oat(oat); 



Some oat.first_level settings

• Set time range and freq range using: 

• oat.first_level.time_range = [-1 2] % secs around stimulus onset

• oat.first_level.tf_freq_range = [1 45] % Hz



Some oat.first_level settings

• To do an ERF analysis set oat.first_level.tf_method=‘none’

• To do a Time-Frequency (TF) induced response analysis set 
oat.first_level.tf_method=‘hilbert’  % or ‘morlet’

• Set time range and freq range using: 

• oat.first_level.time_range = [-1 2] % secs around stimulus onset

• oat.first_level.tf_freq_range = [1 45] % Hz



Running OAT

• Use osl_run_oat to run an OAT:

➡ oat=osl_run_oat(oat);



Running OAT

• Use osl_run_oat to run an OAT:

➡ oat=osl_run_oat(oat);

• This only runs the stages specified in 
oat.to_do, e.g.:

➡ oat.to_do=[1 1 0 0]; only runs 
source_recon and first-level stages



OAT output

• After running, the oat struct contains filenames of the outputs for 
each stage of the pipeline:

➡ oat.source_recon.results_fnames 

➡ oat.first_level.results_fnames

➡ oat.subject_level.results_fnames

➡ oat.group_level.results_fnames

• These can be loaded into Matlab, e.g. to load session 2’s first level 
results use the call: 

➡ res=osl_load_oat_results(oat, oat.first_level.results_fnames{2})



Viewing OAT output

• It is highly recommended that you inspect oat.results.report (an 
HTML page), to ensure that OAT has run successfully (See the 
practical)

• In sensor space, use:

• Use osl_stats_multiplotER and osl_stats_multiplotTFR to call 
Fieldtrip interactive topoplots

• The two orientations of the MEGPLANARs are combined 
(in the first_level stage) by rectifying and adding



Practical

Sensor space trial-wise GLM using OAT on 
epoched task data:

a) Time-domain (ERF) analysis

b) Time-frequency (induced response) analysis


