Sensor Space Analysis

OHBA MEG Analysis Workshop

- Induced analysis of the decision making period:
 - source reconstruction
 - *epoching*: time-locked to when the response is given
 - compute the *average evoked power* (the induced response, ERD/ERS) from 1-12Hz
 - group averaged over 30 subjects

Hunt et al., Nature Neuroscience, 2012.

Talk Outline

- Analysing epoched task data in sensor space
- OSL (OHBA's Software Library):
 - OAT (OSL's Analysis Tool)

Epoched Data Example

• Faces versus motorbikes

- → 240 trials (epochs) of presenting pictures of faces
- I 20 trials (epochs) of presenting pictures of motorbikes
- We want to compare the responses timelocked to stimulus presentation (i.e. the Event-Related Fields (ERFs))

Epoching takes in source or sensor data:

locations x timepoints

Epoching takes in source or sensor data:

locations x timepoints

I. Identify when trial events occurred (e.g. the time of stimulus presentation in each trial)

Epoching takes in source or sensor data:

locations x timepoints

I. Identify when trial events occurred (e.g. the time of stimulus presentation in each trial)

Epoching takes in source or sensor data:

locations x timepoints

3. Average over all trials to compute an average stimulus response, known as an ERF (Event Related Field)

time-within-trial (s)

Trial-wise multiple regression

ERFs can be also computed using separate multiple regressions at each sensor and timepoint

Trial-wise GLM

Trial-wise GLM

Trial-wise GLM

Fitting over time = ERF

Fitting over sensors

GLM

Note that the GLM is a general framework, e.g. in which we can also fit continuous variables:

Hunt, Nature Neuroscience, 2012

Other stuff the GLM can do

- Continuous (e.g. behavioural) variables
- Time-frequency (induced response) analysis
- Linear, and higher order, trends between conditions
- Factorial designs (interaction effects)
- F-tests (combined explanatory power over multiple contrasts)
- Subject-wise GLMs at the group level (e.g. patients vs controls)
- See the FSL course FEAT/FMRI Preprocessing and Model-Based slides at:

A COntrast of Parameter Estimates (COPE) is a linear combination of the regression parameter estimates, e.g.

Contrast [I 0] gives a COPE =
$$1xB_1+0xB_2$$

= B_1
Contrast [I -I] gives a COPE = $1xB_1-1xB_2$
= $B_1 - B_2$

A COntrast of Parameter Estimates (COPE) is a linear combination of the regression parameter estimates, e.g.

Use a t-test to test the null hypothesis that COPE=0:

t-statistic:

A COntrast of Parameter Estimates (COPE) is a linear combination of parameter estimates, e.g.

Contrast [0 I] gives a COPE = $0xB_1+1xB_2$ = B_2

Test the null hypothesis that B₂=0 e.g. where in time and space is there significant positive* activity in response to the motorbike condition?

* as we are doing a one-tailed t-test

A COntrast of Parameter Estimates (COPE) is a linear combination of parameter estimates, e.g.

Test the null hypothesis that $B_1-B_2=0$

e.g. where in time and space is there more* activity in response to the faces than the motorbike condition?

OAT - OSL's Analysis Tool

• **Task-based** analysis in:

- ➡ sensor space, or
- ➡ source space (e.g. via beamforming)

OAT - OSL's Analysis Tool

• Task-based analysis in:

- ➡ sensor space, or
- ➡ source space (e.g. via beamforming)
- In:
 - ➡ time domain (e.g. ERF-style), or
 - ➡ in time-frequency domain (e.g. induced responses)

OAT - OSL's Analysis Tool

• Task-based analysis in:

- ➡ sensor space, or
- ➡ source space (e.g. via beamforming)
- In:
 - ➡ time domain (e.g. ERF-style), or
 - ➡ in time-frequency domain (e.g. induced responses)
- First-level (within-session) analysis, using:
 - ➡ trial-wise GLM on epoched data
 - ➡ time-wise GLM on continuous data
- Group-level (between-subject) subject-wise GLM analysis

OAT Pipeline Stages

OAT Setup

- Set some mandatory fields, and then use osl_check_oat call to setup an OAT struct:
 - \rightarrow oat= osl_check_oat(oat);

OAT Setup

- Set some mandatory fields, and then use osl_check_oat call to setup an OAT struct:
 - \rightarrow oat= osl_check_oat(oat);
- Settings are organised by the 4 distinct stages of the pipeline:
 - ➡ oat.source_recon, e.g.
 - ➡ oat.first_level (GLM within-session analysis)
 - oat.subject_level (within-subject averaging)
 - ➡ oat.group_level (GLM subject-wise analysis)

OAT Setup

- The oat gets stored in the directory specified in oat.source_recon.dirname, with a '.oat' suffix
- A previously setup/run *oat* can be loaded into Matlab with:
 - oat.source_recon.dirname='/path/oatname';
 - oat=osl_load_oat(oat);

Some oat.first_level settings

- Set time range and freq range using:
 - oat.first_level.time_range = [-1 2] % secs around stimulus onset
 - oat.first_level.tf_freq_range = [1 45] % Hz

Some oat.first_level settings

- Set time range and freq range using:
 - oat.first_level.time_range = [-1 2] % secs around stimulus onset
 - oat.first_level.tf_freq_range = [1 45] % Hz

- To do an ERF analysis set oat.first_level.tf_method='none'
- To do a Time-Frequency (TF) induced response analysis set oat.first_level.tf_method='hilbert' % or 'morlet'

Running OAT

- Use osl_run_oat to run an OAT:
 - \rightarrow oat=osl_run_oat(oat);

Running OAT

- Use osl_run_oat to run an OAT:
 - ➡ oat=osl_run_oat(oat);
- This only runs the stages specified in oat.to_do, e.g.:
 - oat.to_do=[1 1 0 0]; only runs source_recon and first-level stages

OAT output

- After running, the *oat* struct contains filenames of the outputs for each stage of the pipeline:
 - oat.source_recon.results_fnames
 - ➡ oat.first_level.results_fnames
 - oat.subject_level.results_fnames
 - oat.group_level.results_fnames

- These can be loaded into Matlab, e.g. to load session 2's first level results use the call:
 - ➡ res=osl_load_oat_results(oat, oat.first_level.results_fnames{2})

Viewing OAT output

 It is highly recommended that you inspect oat.results.report (an HTML page), to ensure that OAT has run successfully (See the practical)

- In sensor space, use:
 - Use osl_stats_multiplotER and osl_stats_multiplotTFR to call Fieldtrip interactive topoplots
 - The two orientations of the *MEGPLANARs* are combined (in the first_level stage) by rectifying and adding

Practical

Sensor space trial-wise GLM using OAT on **epoched** task data:

- a) Time-domain (ERF) analysis
- b) Time-frequency (induced response) analysis